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SECTION I
INTRODUCTION

The feasibility of using the summed output of a ring of regu-
larly-spaced radially -oriented horizontal seismometers for estimating the
output of a vertical seismometer located at the center of the ring was dis-
cussed in (Potter~Roden, 1965)* for an assumed noise model conaiefing of
isotropic single-mode Rayleigh waves. The results of that preliminary
study were encouraging enough to justify a deeper iuvestigation of the theo-
retical noise-reduction capabilities of nlanar seismic arrays containing
both horizontal and vertical instruments. In the present report we wish
to consider the general problem of trying to use several concentric rings
of horizontals to estimate the average output of a ring of verticals (concen-
tric with the horizontal rings) in an isotropic noise field which may contain
more than one mode. The present problem reduces to that considered in
P-R if 1) there is only one horizontal ring, 2) the vertical ring has radius 0
and contains only one seismometer, and 3) there is only one significant
noise mode.

The underlying motivation remains the same:the enhancement
of a vertical or near-vertical P-wave. In the problem of trying to detect
teleseiamic events, and also in much oil exploration work, the ''signal' is
a vertical P-wave which may be deeply buried in surface wave noise. Let
v(t) be the average output, due to surface wave noise, of a ring of vertical
seismometers, and let hl(t). e hN(t) be the average outputs, due to
surface wave noise, of N rings of horizontal seismometers. The functions
v(t) and hn(t) will always be assumed to be stationary time series. Since
there is usually a degree of statistical coupling between horizontal and

vertical components of surface wave noise, it is reasonable to try to design

Hereafter referred to as P-R
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filters gn(t) to apply to hn 80 as to make the autopower spectrum of

elt) = vit) - (g, @ b))1) - ... - (g @ h) (1) (1.1)

as small as possible. On the other hand, since a vertical P-wave has no
horizontal component, a processor of the type described by (1. 1) will effect

no distortion of the P-wave signal.

In this report we shall restrict our attention to processors

of the type (1.1). For any such processor, we define the interpolation

error to be

LLE. = E(f)/V(f) (1.2)
where
E = autopower spectrum of e(t)
V = autopower spectrum of v(t)

If S = crosspower spectrum between h and vand C e = crosspower spectrum
betWeen h and h)

N N . N N
E =V -Z G s -Z GS_ +Z ch anGj (1.3)
n=1 n=1 n=1 j=1

where Gn = Fourier transform of g . The interpolation error is minimized if
n

the frequency-domain filters Gn are chosen s0 as to satisfy the matrix equation

[€11C12- -+ Cin [ G, S,
¢ . . . . = . (104)
CN1Cnz* * * Oy | Gy | sy

2
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Filters »Gn satisfying (1.4) are called optimum interpolation filters, and for

such a set of filters the interpolation error (1.2) becomes

N
LE. = 1-(1/V) Z G S * (1.5)

n:=1

(Minimum interpolation error)

All arrays considered in this report will have in common that
the seismometers are deployed in concentric rings of regularly-spaced
vertical or radially-oriented horizontal components. The restriction to this
type of geometry has been based upon several considerations. First, the
mathematical description of array response can be made more concise and
understandable if the radial symmetry of the assumed noise field is com-
plemented by corresponding symmetries in the array geometry; the optimum
interpolation filters to be applied to the seismometers in a given ring are
equal (or nearly so) for the arrays and noise fields which we shall study,
and hence, we are justified in treating the average output of all seismometers
in a ring as a single channel. Thus, if there arec two rings of horizontals
each containing six seismometers, we design only two filters, not twelve,
Another consideration is that a ring average of regularly-spaced vertical or
radially-oriented horizontal seismometers is fairly insensitive to directional
characteristics of the noise field, provided the separation between seis-
mometers is not large compared to wavelength; hence, although we assume
isotropy throughout this investigation, the answers would be almost the
same even if the noise field were assumed to be nearly unidirectional.

The use of rings of verticals rather than a single central
vertical has a special purpose: a vertical ring average has a low response
for certain wavelengths. This property can be used to overcome one of
the serious problems connected with horizontal-vertical interpolation,
namely that for higher modes there exist frequencies at which tke hori~

zontal motion vanishes, making interpolation of the vertical component

impossible at those frequencies.




The first step in our investigation, the derivation of formulas
for numerical calculation of ring crosspower spectra and optimum inter-
polation filters for a given array geometry and multimode surface wave
noise field, is carried out in Section II. These same quantities may be
expressed by means of different formulas, which are less useful for numerical
calculation, but more inter‘esting from the theoretical point of view because
they give some insight into the difficult question of designing an array geo-
metry to suit a particular noise field. These formulas are derived and
discussed in Section IIl. Section IV describes and discusses a means for
graphically representing the response of a given horizontal-vertical inter-
polation array to surface wave noise having arbitrary dispersion and hori-
zontal-vertical coupling. Attention is also directed to the question of how
the array responds to incident P-waves whose apparent angle of emergence
is not quite vertical. Finally, in Seétion_ V, we present the results of

numerical calculation of array response for several given array geometries

and noise fields.
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SECTION II
MULTIMODE RING CROSSPOWER SPECTRA AND
OPTIMUM INTERPOLATION FILTERS

A. CROSSPOWER SPECTRUM FOR TWO SEISMOMETERS

Let O be the origin of polar coordinate system in the plane
of the earth's surface. The position of a point P is specified by giving
its polaz coordinates (r, p).

At a given point P1 = (rl, pl) suppose we have a vertical

seismometer v., and a horizontal seismometer h which is radiallz

1 1

oriented, i.e., the orientation angle of h1 is Py At the point

PZ= (rz, pz) let us be given a second pair of seismometers v2 and hz,

where v2 = vertical, hz = radially-oriented Lorizontal.

Now suppose, as in P-R, section 9, that we have an

isotropic single-mode Rayleigh wave noise field, where the energy
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propagates across the plane in pla .e waves and is uncorrelated from

direction to direction. Let

8(f) = inline horizontal autopower spectrum
K(f) = inline horizontal-vertical transfer function
k(f) = wavenumber (cycles per unit distance)

We wish to obtain simple expressions for V = érosspower
spectrum between Vi and Vs S = crosspower spectrum between 'hl and Vo
and C = crosspower spectrum between hl and h?_’

It may be shown (cf., P-R, section 9) that

= 2.1

V= IKIZ‘I’- 1—-/ exp (iu,cos [8-p,] - iu cos [B-p ])de

2n 2 PP 2l = 1

7
1 . . .

S = -K‘I“-Z—ﬂ—:!‘ cos(e-Pl)exp (mzcos [G-Dzl-mlcoa [9-91] >d6

7
cC=1% ZIT_‘[ cos(e-pl)cos(e-PZ) vexp(iu.zcos [6-p2J~ iulzcoafle-.pl]\)de

where u = Zﬂkrl, u, = Zﬂkrz. It is now useful to observe if we define

-
! i
F(ul,uz) = '31-1—/ exp (iuzcos [9-92] -iulcos [9-91] )de

-1
then formulas (2.1) become (2. 2)
2
V= IKI P ,F(ul.uz)
dF(u,,u.))
S - -iK@ - ——1——2-—
du
1
3% F(u.,u.)
1" 72
€= =%
|
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In order to obtain more convenient expressions for the

crosspower spectra we note that
uzcos(e-pz) - 111cos(’3-Pl) = u' cos({6-p) where
u and p are defined by

2 2 3
u = (ul + u, - Zuluzcos [91-02']) and

cosp.- ulcospl, u sinp = uzsmpz - ulsmpl

u cosp = 1{2 2
Hence
n \)
1
F(ul,uz) = Tn_/ exp (iu cos [G-p]) dé
-1
m
= Z:T f exp(iu cos 8)dn
=1
! m
= 5= cos(u cos9)de
-1

The last expression is a form of Poisson's integral and is equal to
Jo(u), where J'c is the zero-th order Bessel function of the first kind

(Watson, p. 47). Therefore,

F(ul,uz) = Jo(u) (2. 3)

here w=(ul + u -2 ¢
where u = uy u, uluzcos [pl-pz]




Substitution of (2. 3) into the first formula of (2. 2) yields

V= lezwo(u) (2.4

In order to get the corresponding expressions for S and C we have to

operate on (2. 3) by taking the partial derivatives indicated in (2. 2).

Using the standard Bessel function identities
' - _ r
3 () = %(Jn_l[x] LI [x]) (2. 5)
=7 (x) =T [x]+ T, [x]
X n n-1 n+1
J_(x) = (-l)an(x) (Webster, p. 322)

we find

a - a = au ’
a_u'l— F.(ulruz) e aul Jo(u) i~ E'l— ? Jo(u)
u. -u_cos(p,-p,) (2. 6)
(% 1% ) L 5w
b 1 1 W
= - (ul -u,cos [‘pl-pz]) (J'o [u] + J, [u])
and
a2 3 Bu
s F(u,,u,) = o+ - J. [u
auzaul 1’72 Buz < aul 1 [ ?
az a ] (2.7)
-0 u u u ’ : 1
= Soh— TW- e 2 5l
auzaul 1 aul auz 1
8
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auzaul u aul auz 1
s y2u du

= -ﬁu'-——auzaul (0 [u]+ J [ub au ST (T [u] - [u])

- [, 2% NI PRI e WS T
auzaul aul aua 0 @uzaul du, auz 2

9 ( du ) du du Odu
-— [u (u)-ﬁ‘-—(u—-) -2=— ¢ J {u)
auz \ du u, > 0 [auz aul au auz] 2

2 2 Jo(v)
=% cos(p1 -pZ)JO(u) -3 (ulcoa[ pl -pz] + u,cos [pl -pzj -Zuluz) . uZ
Tl 1 1
It may be verified from (2. 5) that uz = 3 0(1, + = J (u) + — o J4 (u)

Hence we may now collect our results in the equations

V= |Kl2§J0(u) (2. 8)
S=iK%. # (ul - u,cos [pl -p2]>(JO [u] + JZ[uJ)

. 2 2 '
C=29%. ﬁcoa(pl-pz)Jo(u) = <u1 cos [pl-pz] + uzcos[pl-pz] -Zuluz)

(1el> Tote) + 75 3 Ty + 45 4‘“))

2 2 1
where u = (ul + u, - Zuluzcos [p -pzj) . It may be shown that the

formulas (2. 8) reduce to the formulas 10.13 and 10. 14 in P-R for the

special case when u =u,.
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B. SINGLE-MODE CROSSPOWER SPECTRUM FOR TWO RINGS OF
SEISMOMETERS

We shall now compute the crosspower spectrum W for two
concentric rings of regularly spaced seismometers. Thus let Ty Ty @
20, r

o. be real numbers, r 20, and let N, ana N, be positive integers.

2 1 2 1 2
Let
s (1) = (1/N)) (a.l(t) § n. o aNl(t)) and
1/ \ h
sz(t) = ( NZ) bl(t) + ... + sz (t)) where
g . . 2mm
a_(t) is the output of a seismometer at the location (r y =+ Q ) and
m 1 N1 1
. g : 2rn
b (t) is the output of a seismometer at the location {r,, = + Q,}. It
n . 2 N2 2

is assumed that either all the a.m's are vertical seismometers or they are
all radially -oriented horizontals, and similarly for the bn's. Thus Bj(t)
is the average output of a ring of Nj regularly spaced se.ismomete'rs at
distance rj from the~ origin, with the ring having a rotation angle Ctj,
j=1, 2. (Figure 2.1).

We wish to <‘:.omputé W, the crosspower spectrum between

8, and 8y If an = the crosspower spectrum between a and bn’ then

2

1 N

2
'w=i-iﬁ_z—'2 Z 8 (2. 9)
m

=] n=1

10




Figure 2.1. Schematic Diagram of Ring Array

Consider first the case when all the a 's and bn's are
vertical seismomneters. Then we have by (2. 8) that the crossp/wer
spectrum is

N N

1 2
2
VRT3
W= VI,Z = NN Jo(umn) (2.10)
12 =] n=1
11




{crosspower spec rum for two vertical rirg averages)

3

2 2
where L (u1 + u, - 2u,u,cos ¢mn) » Uy = Zfl'krl, u, = Zﬂkrz,

2 172
2mm 2Tn
and bp N1 - NZ e, -C(.Z

Similarly, if the am's are horizontals while the bn's are

verticals, we get from (2. 8) that

. N N (2.11)
w=s _iEL . _lI Z )
=51,2°2 NN, 2 (“1'“z°°84’mn,
m=1 n=1

) (JO (“mn ] * JZ lumn]>i

(crosspower spectrum for a horizontal ring average and a vertical ring

a.vera.g e! .

Finally, if all the am's and bn's are horizontals, we get

(2.12)
N N
W=C1,2= @'NN Z ‘bcos(b [ n.]

: m=1 n=

2 2 1 p 1
( 1cos(b + u, cos(bmn -2u1u2> (1_6 J’o [umn] +ﬁ .'l'2 [umn]

=7
48 V4 [umn)

(crosspower spectrum for two horizontal ring averéges).

12



C. MULTIMODE CROSSPOWER SPECTRA

We shall now derive the array crosspower formulas for
multimode noise. We suppose that the noise field has P modes, and

that for the pth mode,

P (f) = inline horizontal autopower spectrum

Kp(f) = inline horizontal-vertical transfer function

kp(f) = wavenumber (cycles per unit distance),*
forp =1,2,...,P. We assume that any two modes are uncorrelated
and that the energy from each mode is isotropic, uncorrelated from
direction-to-direction, and pPropagates in plane waves across the half
space. Our array ;:onsists of M rings of vertical seismometers and
N rings of radially~-oriented horizontal seismometers. In the mth

vertical ring we have Am seismometers, located at the points whose
2118

’ Am th
output of the Am seismometers in the m  vertical ring is denoted by

polar coordinates are (dm + q.m), s=12,... ,A.m; the average

th . . : :
Vo In the n™" horizontal ring we have Bn horizontal seismometers,

located at the points (;n, % + sn), 8= 1;2,0. . Bn; the average output ,
n

of the Bn seismometers in the nth horizontal ring is denoted by hn' ’The :
numbers dm and c.m are, respectively, the radius and the rotation angle of
the mth vertical ring, m='1,2,.. . M; similarly, rn and Bn are
respectively the radius and rotation angle of the nth horizontal ring,

n=1,2, ..., N.

In this report the symbo] "p" appearing as a superscript is merely an
index and is not an exponent. Any other superscripted symbol denotes an
exponent.




Then according to (2. 10) and our assumption that there
is no correlation between modes, we find that the crosspower spectrum

\' between v_ and v is given by
mn m n

| 1 L, & &l kP12 4P 5 fu P (2. 13)
an—A A Z 2 : o\ st/

(multimode vertical ring average crosspower spectrum)

2
where u P = anF(d 2 +d ~-2d d cosp )é and
st m n m n st

= + -
P A A G.m an .

If m =n, (2.13) reduces to a slightly simpler formula for

the vertical ring autopower s ectrum V_ =V :
g P P m m

(2. 14)

A .
1 S o P12 .p ) s
vV o=r— ; E |&"|° & Jo <4ﬂk .dmsm[A })
m p=l gz} m

(multimode vertical ring average autopower spectrum),

Similarly, the crosspower spectrum S between the
average hn of the n o ~ horizontal ring and the average vm of the mth

vertical ring is obta.med from (2. 11):
P Am B (2.15)

Sem = 5 Y ZZ iKT%p_ . {2nikP

.(rn-dm COSCth) (Jo lustP]+ 3, lustl_’ )

(multimode crosspower between horizontal and vertical ring averages)




where Pgp = - + a -~ sn

p:anp(rz + d 2 . 2r d coscp)%.
m n m st

Finally we obtain from (2. 12) the formula for the crosspower

spectrum an between the horizontal ring averages hu and hj:
o Bj (2. 16)
- 1 P P
an " B B, Z z ) $ .{écoscpst J0 <ust>
n j p=l 8=l t=

- 2 2
l.zrn rj - (rn + rj ) cost.pst’

1 P 3 P 1 p
‘116 %o (ust ) 12 JZ(ust )+48 J4(ust )

(multimode crosspower between two horizontal ring averages)

2ns  _ A '
B B +B = 8,

n J

where P =

2

and u p=2nkp(r2+r.
n J

3
st Zrn rj coscpst)

D. MULTICHANNEL INTERPOLATION FILTERS AND INTERPOLATION
ERROR

For eachm =1,2,...,M, we wish to degign a set of

optimum interpolation filters G G o%

lm, 2m M GNm to be usedin

estima.?mg v from hl' hz. ces 'hN in multimode noise (i.e., Gjm is the

15



frequency filter to be applied to hj to estimate v » j=1,2,...,N).
According to (1.4). the optimum interpolatmn fxlters

Gjm are obtained by soiving the matrix equation

() ) (- o
nj jm nm ;| :
where an and S are given by (2. 15) and (2. 16). 1t is interesting to

note here that if all of the modal horizontal-vertical transfer functions

KP an are purely imaginary at all frequencies (which is the case for

the usual theoretical model of a layered half-space [Laster -Linville, 1966])
then by (2. 15) and (2. 16), (C ) and (S )are real matrices, and hence

the filters GJ are real also.

Once the optimum interpolation filters Gjm have been

computed, the optimum interpolation error for Vi is given by {1.5) as

gl -
(LE.) = 1- (1/v )Z_‘i G. s = )
m m = Jm “jm : :

16
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SECTION 111

ALTERNATIVE CROSSPOWER FORMULAS

If we assume a certain noise field and'specify an array
geometry, tien by use of formulas (2. 14-2. 16) we may calculate the
array crosspower spectra on an electronic computer to any desired
degree of precision; these results may in turn be used to calculate the
interpolation filters and interpolation error (formulas 2.17, 2.18).
However, although formulas (2. 14 - 2. 16) are suitable for numerical
calculation, they are exceedingly inelegant, and because of their
complexity they can not give insight into how the array "works." How
many rings should we have in our array? How does the response of a
ring change if we double or triple the number of seismometers in the
ring? What is the effect of varying the rotation angles @, and B,
of the verrical and horizontal rings respectively? For a theoretical, i.e. R
non-computational, study of questions such as these, formulas (2.14-2.16)
are no help. It is of interest, therefore, to derive alternative expressions

for the array crosspower spectra which do give insight into the functioning

of the array.

A. PRELIMINARIES

The principal tool in the derivation of our alternative

crosspower expressions will be Neumann's formula (Watson, p. 358):

(3.1)
o ([ % +Yz - 2xy C°B°F1;") = ;:0 €q Jq (x) Jg (y) cos ¥ -

where

e =J1. a=0
q 2, 9> 0

17
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The series on the cight is absolutely convergent for all real x, y, and @,

The convergence is uniform in x and y if x and y are restricted to lie in
any finite interval. Hence one may differentiate the scries term by terin
with respect x or y.

We shall also need two definitions from elementai'y number
theory. (1) An integer ¢ is a multiple of the integer N if and only if
there f'axists an integer m such than mN = q. Thus, for example, zero is
& multiple of all ntegers. 6 is a multiple of 2, 7 is not a multiple of 3.

(2) Le,'lt N, and Ny, be positive integers. The least common mnltiple of
1 pA P g

N, a.x/:d N, is the smallest positive integer N Buck‘z that. N is a multiple of
both/'Nl and NZ' Thus, the least common multiple of 3 and 7 is 21, the
least common multiple of 6 and 8 is 24, and the least common multiple
of 5 and 10 is 10. |
Finally, we nzed to know the following fact: let q and N
be integers, with N 2 |, aad let & be any real nu;;x'b&r. Then
L

N

Z cos (q [.3%;& +6] ) (3.2)

l?':l

- { Ncosgqé, if g is a multiple of N
0 » if g is not a multiple of N

} Ncosgb, if q=0, N, +2N, %3N, ...

? 0 , if otherwise.

¥

\‘.
B. INFINITE SERIES FORMULAS FOR CROSSPOWER SPECTRA

—
b Let v, and v, be the.averages of two concentric rings of

regularly spaced vertical seismomt\atgers; in the jth ring, let Nj = numker
of seismometers, rj = radius, u,j = rotation angle, j = 1,2. Then in a‘
single mode noise fleld (&, K, k), the crosspower spectrum Vo between
v; and vy is {2.10)

18
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ii_,i i-_ I i - S A i

=n =m

(3.3)
N

ad i 2 2 3

172 m=]1 n=1

[E
n
L= ]

where
2mm 2nn
H = = et L AL Srallldl -
al 21Tkr1, u, 21'rkr2 ’ chn N1 Nz Ctl aZ.
Hence, according to Neumann's formula (3. 1) we have
2 N, N ©
V.. = Ki & . Z E quq (ul)Jq(uz) cozssqcpmn , or,
12 N. N
172 m=1 n= q=0
reversing the order of summation, (3.4)
) N; N '
Vi, 2* .J_.J__;I{ NQ i ;e I, (up)d (u,) - Z 5 cosqcpmng
12 q=0 ' 14 1 m=1 n=
The irner double summation may be simplified with the aid of (3.2).
Summing first on n, we see that
N N N N
2m 21n
cosq@ a cos{q[,, -5 te, - D
m=1 n= ma e | \ N N2 5 a2.‘

is equal to 0 unless q is a multiple of N, by {3.2). O the other hand, if we

2’
reverse the order of summation we see that the same sum is equal to 0
unless q is also a multiple of Nl' Thus we see that tae inner double summa-
tion in(3.4) is 0 unless q is a multiple both of N1 and NZ’ i.e., unless

q is a multiple of N, where N = the least common multiple of N1 and N

5"
So, suppose that q is a multiple of N. Then, using (3.2) twice, we get




1 2 ( 'l"an 2im ] )
2 y - ta, -0
cO8 q ' 2 (3' 5)
- . N1 Nz 1 1o it
m=l1 n=1

N .
4 2mm
= z NZ cos (q[Nl +a.1 -,azl)
m=1

= Nl NZ cos (q [al - azl)

Hence, (3.4) becomes

0

2
Vl,z = |K| 6;0 eqNJqN(ul) JqN(uz) cos(.gN[al-aZ]), or

(3.6)

<
n

2
12 |K|“ % I, (ul)Jo (u,)

-]
2
+2 |K| 3 E JqN(ul) JqN(uz) cos (qN [0.1 -0.2])
q=1 ' g

(single-mode crosspower spectrum between two vertical ring averages)

where

u, = 2mkr,

J U

r, = radius,

J

" : .th .

aj = rotation angle for the j = ring
N = least common multiple of N1 and NZ
J T 1;2

Now, let hl and hz be the averages of two concentric rings
of radially-oriented horizontals, where uj, rj, aj, N., and N are the same’
as above. We wish to derive expressions for SL p = crosspower hetween h
and Vo and Cl,Z = crosspower between h1 and hz. In view of equations (2. 2),

(2.3), and (3. 1), we see t:hat:S1 zand C1 2‘can be obtained from (3. 6)asf011bw§:
’ ?» " f

20



1 (£ bttt iy ]
SI.Z -iK?$ aul eqNJqN (ul)JqN (uz) cos [qN _(“.»1 qz_)],
q=0
-]
2
Cpa ™ ¥ &, 8u; SanTan (80T gy (up) cos [qN @ - “2)]’
q=0

We may carry out the indicated differentiations term by terni, to obtain
" (3.7)

SI,Z = iK} Jl(ul) JO (uz) - 2iK$ ; JqN (ul) JqN(t,IZ) cos(qN [al_-a,z])

(single-mode crosspower spectrum between horizontal and vertical

ring averages)

and (3.8)

[}
CI,Z = §J1(\11)J1(u2) +23% (FZI JqN '(ul)JqN (uz) cos(qN [al - 0‘2])

(single-mode crosspower spectrum between two horizontal rigng;averliges).

We could rewrite (3.7) and (3. 8) by substitnting the identity

Ton (8 é(JqN- 1951 - Janer [%] )

Let us express formulas (3. 6-3, 8) in the form

Ik[? 8 "To)T),) + e (Noupuy)

<
n

lKQJl(ul)JO (uz) + e, (N, us uz) and

CI,Z = QJI (u.l),.lf1 (uz) + e, (N,ul,uz)




where 5
el(N,ul, uz) = 2|K| ) ; JqN \ul) JqN (uz) cos [qN--_(al-az)J, etc.

The fact that (3. 1) in absolutely convergent implies that

for any firxed values of u, and u, we have

(3.10)
lim gj (N,ul,uz) =0,j =1, 2, 3.
N-oow

Since N is the least common multiple of N1 and NZ' the numbers of
seismometers in our two rings, (3.10) shows that if we hold the radii
of our rings constant and let N1 and N2 increase to infinity, then the

crosspower spectra (3. 9) approach the limiting values

(3.11)
- H 2 .
V1,z = K[ ¢ I, (ul)JO (u,)
S1,z = iKeJ, (ul)JO (u,)
Cl,Z = @Jl (ul) Jl (uz)

That is, (3.11) gives the crosspower spectra chat would be obtained by
using ''circular seismometers " whose outputs are respectively the average

integrated motion of all points in continuous rings with respective radii r

and rz. It is unfortunate that such instruments do not exist, because

they would be the ideal instruments tr employ in horizoatal-vertical

interpolation processing.

In fact, perfect interpolation would be possible if circular
seismometers could be uced. For, suppose our isotropic noise field
contains P non-zero modes with modal parameters Qp, Kp, and kp,_

p=1,2,...,P, (see section 2C), and our array consists of one circular
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vertical seismometer v with radius d, and P circulay honzontal
seismometers h with radii r» n=l, 2,.+.;P. We shall show_. that-hl,-
hz, «es, and hP can be used to predict v with zero interpo]{.ation‘ error,
Following our usual notation, let V = autopower spectrum of v, Sn =
Crosspower spectrum between hn and v, and an = crosspower spectrum
between hn and hj. From (3.11) we find

i 2 2

vV = K § J (2nk d

.'p, pO( p)
p=1

(3.12).

P
[ Sn = 2-: _1Kp §pJ1 (anprn) Jo(anpd)
p=1
P
=Z§J 2tk r )J (2 7mk r,
f o #p7, @i )T (2T e
P
[ Define the matrices § and A = (Apn) by
[ $ = d1a.g(§1, QZ,...,}P) and
Apn = J 1 (anprn),
[ and define the column vector K by
3 K = (K I, (2mk d
i P 0( P )) g

Then the matrix C = (an), the column vector S = (Sn), and the 1 x 1

matrix V satisfy ’
(3.13)

At5A
iatsk

%
= (K) sk

wn
]

aed edd G0 273
I

ST
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Now, the optimum interpolation filters C'l' .ok ,Gp are found by solving
the equation CG = S (eq. 1.4) for G, where G is the column vector (G )
But by virtue of (3.13) this equation becomes SR

A'sac=iat 5k (3. 14)

Assuming the matrix A to be nonsingular, we can solve the equation
AG = iK to obtain '

G=ia"lk - - (3.15)

and this solution is automatically a solution of (3. 14). (Note that this
solution is independent of 8§, i. i.e., the optimum mterpolatmn filters do
not depend upon the autopower spectra of the various modes for the case

of circular seismometers. ) The interpolation error is given by

;P . (3. 16)
ILE, = ] --,1-,-2 ) (eq. 1.5}

Z GS.* = (sviG
i
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Hence
P.E. = 1 - (1/v)[s¥'G)
=1« (1/Vv) (-i,‘[,K#Jt e;A-iA'IK), by (3. 13 and 3. 15)
. .
=1- -——-—-—-‘K*)t LA
(K*)" 3K

Thus, in a noise field with P modes, it is possible to achieve perfect
estimation of a circular vertical seismometer by employing P circular

horizontal seismometers.

On the other hand, a close look at the equations of the

preceding paragraph will show that if we had tried to estimate v by usiffzg

fewer than P circular horizontal seismometers, we should have obtained

rather poor results in general. That is, one needs at least P circular
horizontals to handle P modes of noise. It is clear that this same rule
of thumb must apply in the case of the finite arrays which are the object
of this study, since a circular seismometer is the ideal limiting'caég of
a ring containing finitely many seismometers. Thus, the most obviou.s" ;
but perhaps the most important design criterion for horizontal-vertical

interpolation arrays is

Number of horizontal rings 2 number of noise modes. (3.17)

We have seen (eq. 3.10) that as we let the number of
seismometers in each ring approach infinity, the response Jf an array

df ringe of seilsmometers approximates the respunse of an array of circular




seismometers. But finite rings approximate circular seismormeters

in another sense as well, for it may be shown that

: (3.18)
N,u,,
lim °1 (2 e =0, forNz1
U190 KT 8 Tg(u)) 3 ()
e, (N, u.,u
lim .2( i o) = 0, for N>2
u,u, +0 iK 8 J'l(ul)J'o(uz)
and
e, (N,u,,u
lim 3 (Noujsu)) " =0, for N> 2.
u,,u, =0 g
1'277 83, (u) 7, (u,)
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These equatmns together with {3.9) show. that the crosspower spectra for
finite rings approxlmate the cros spower spectra for c1rcu1ar se1smometers
if the u, = 21rkr, are small (and the number: of semmometers in each hori-
zontal img is gi‘eater than 2). Thus, suppose we have a fixed finite ring
array with each horizontal ring containiﬁg at least 3 seismometers and
suppose that the number of horizontal rings is greater than or equél to the
number of noise modes present. Then the optimum mterpolatmn error

approaches zero as the maximum wavenumber

max (k (f))
l<p<sP P

approaches zero. Convarsely it can be shown that the optimum inter-

polation error approaches 1 as

min k (f))
lspsP ( P

gets very large.

We shall now discuss some further consequences of equations

(3.6) - (3.8). For convenience, let.

(Nl’ rl’ al)x(NZD rz! az)

denote the crosspower between two rings, where for the jth ring,

Nj = number of seismometers
r, = radius

J

aj = rotation angle

Jr = a lhE2
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Then (3. 6) - (3.8) show that
(3. 19)
(Nl, rl. GI)X(NZ, 1'2, az) = (N, rl,al)x(N, 1'21 az) = (NZ, 1'11 GI)X(NI{IZ:@Z)
where

and N

N = least common multiple of N1 2

Thus, for example, the crosspower spectrum between a 6-element ring and

a 7-element ring is the same as the crosspower spectrum between two

42-element rings. Since a 42-element ring is a closer approximation to the
ideal case of a circular seismometer than is either a 6-element ring or a
7-element ring, we have evidence that is very suggestive of a possible
advantage to not having the same number of seismometers in all rings of the
array. There may also be an advantage in varying the rotation angles q.j.
from ring to ring. For example, in the case of 6- and 7-element hqrizoﬁtal

rings, we have

(2)
(6,r1,0)x(7, rZ,O) = 3. Ji(ul)Jl (uz)

t o2 ae {In DI, (a) 437, (u) 32, () + cooed
whereas

(b)

6. Ty O)x'(7, rz,él-‘l)

ted {' Tgq (W) Tgq (uy) + 7)o () T o) - . }

In (b) we have obtained a much better approximation to the cronspower

between two circular seismometers than in (a).
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However, the question of exactly how much advantage, if any,
there is to varying the num'bef of seismometers and rotation angleé from 7
ring to ring is very difficult to attack from a purely theoretical point of view.
An equally difficult problem is that of optimizing the choice of the ring radii
once the number of rings has been decided upon. Unfortunately it seems at
the present time that the best way of investigating these problems is to make
numerical calculations of interpolation error for various assumed noise
models and'array geometries, and arrive at array geometries suitable for
a given noise model through trial and error. SectinnV gives an account of

the first steps that have been taken in such a program.
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SECTION IV
ARRAY RESPONSE FOR A GIVEN SET OF
INTERPOLATION FILTERS

A. INTERPOLATION ERROR FOR AN ARBITRARY NOISE MODE

Until now we have been concerned with the problem of
designing filters to minimize the interpolation error for a given multimode
noise field. Let us now take a slightly different point of view. Suppese

we have an array consisting of a ring v of verticals and N rings h_, h

w Cling [0 ah
hN of horizontals, and suppose we hxve already desigited a set of ;}_'ilte?;-s
Gl’ Gz, .o ’GN' What is the response of the given 4r ray (with the given
set of filters) to an arbitrary noise mode with modal parameters 9, K,
and k? While the filters Gn may be optimum interpolation filters for
some particular multimode noise field, we ask how well the array will
perform in noise for which the filters may not be optimum.

For the noise mode (%, K, k) the output e(t) of the interpolation
Processor is given by {1.1). As before, let E = autopower of e, V = auto-
power of v, Sn = crosspower betweep hn and v, and an = Croscpower

between hn and hj. We have (1. 3},
N N :
vy e, Lo X Lele,
BI= = S n"n n njj
n=1 n=1 n=1 j=1

Now, in the single-mode crosspower formulas (2.10-2. 12), note that the
only piaces wher= ¥ and K occur are outside the summations as muiti-

plicative factors.
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We may therefore write

5 (4.1)

v = K[| a(f, ), '
N *
Z G™S =iK?® *b(f,k), and

nn
n=1

N

Z “n' nJ J =% cif,l)
n=1 j=1

where the functions a, b, and c are independent of ¢ and K. (a, b, and ¢
do depend upon the array geometry and upon the filters Gn, but these are
regarded as fixed.) It may be shown that a and ¢ are real and non-
negative, and a < 1; b may be complex, but b is real if the filters Gn are.
Substituting (4. 1) into (1. 3), we find
(4. 2)

E=§'l- 2-1bK+1bK+-:J

2
ca- K] @{,1-__._ 2, L fe vlblE

,Klz a az'

Hence the interpolation ervor I.E. = E/V'is

1 (e . Ibl
'KIZ a 2

+




i
j Let us define the total error (T. E.) for our processor to be

T.E. = E/(autopower of a single vertical seismometer)

'j = E/|K|%¢ = a- (LE.)

Then, by (4. 3),

The total error T.E. is a better measure than I. E, of how

well our processor is succeeding in removing surface-wave noise from a

g  wWNWe W ey
H
=
n
[+1]

vertical P-wave trace, since T.E. takes into account the fact that some

noise reduction is effected by w “venumber aliasing between the seismometers

in the vertical ring v. If the vertical ring has radius zero and contains only

one seismometer, then T.E. = I.E.

B. GRAPHICAL REPRESENTATION OF ARRAY RESPONSE

In the study of vertical arrays it has been found useful to

represent array response graphically by contouring the power response
of the array in the kx-ky plane for selected fixed frequgncies (seg, for
example, Burg, 1964, pp. 710-712).* A similar method for graphical
representation of the response of horizontal-vertical interpolation arraye

] will be described in this subsection.

Now, the response of a vertical array to a wave propagating

across the surface depends upon frequency, wavenumber, and direction.
However, the response of a horizontal-vertical interpolation array depends

upon yet another variable: the horizontal-vertical transfer function K.

The term ''vertical array' is used here to describe a planar array
with only vertical-component seismometers.
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It i 1s convenient to simplify the problem: by elimmatmg at least one of the
four variables; as we have done throughout thls report, we will olimina,te
the parameter of direction by. assuming 1sotropy. Probably not much is
lost by this simplification smce. for wavenumbers small enough to make

good interp»olation feasible, directional effects are probably neghgible

(see Section III)

In the usual situation the filters G will be real (see Section
IID), and hence the functions a(f, k), b(f k), and c(f k) will be real also.

and for our isotropic single-mode Rayleigh wave noise field (¥, K,k),

K will be purely imaginary. If we let H = 1/iK, then H is real, and equations
(4. 3) and (4. 4) simplify to

(4. 5)
LE. =1-22 ', & 442 abd :
a a

T.E.=a - 2bH + cHz

That is, if we hold f and k fixed and let § vary frzom -© to
+=, I.E, describes a parabola with a minimum value of 1 - aj-bc—- » attained
when H =% . fH=0o0orH =%b—-. thenl.E, =1, ZSimilarly. T.E.

describes a parabola with a minimum value of a ol attained when

Lc- J bz-a.c + ¢, then T.E. =1.

Now, select a set of frequencies f,, i=12,

H=b/c. IfH =

o]o'

.. For each
fixed frequency £, plot the curves (1) H =0, (2) H = b/c, (3) H = :"CE

(HH=2 4 —i— Pty v .and(5)H=P---i— A T S

the H-k plane(see Figure4.1). For points (H, k) lying between curves (1)
and (3), I.E. < 1; for all other points, I.E, 21, Similarly, for all pomts
lying between curves (4) and (5), T.E. < 1; for all other points, T.E. =2 1.

o
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Two possnble refinﬂments to the above ‘might be a) writing
cown the value of T.E. or I, E. at selected points along the curve (2) of
minima, or b) contouring either T.E. or I. E. in the H-k plane, usmg

either a linear or logarithmic scale for the contour 1ntervals. -

' (4)
Q
(2) \

) (2) =

k=
(5)
(3)

Figure 4.1, Graphical Representation of Array Response
for Fixed Frequency fj {Sketch) '

C. RESPONSE OF ARRAY TO NON-VERTICAL P-WAVES

If an emergent P -wave is not vertical, then our interpolation

processor will distort the signal to a certain extent. Exactly to what extent

the detectability of P will be affected is related to the quantity E/Q, where

E is the autopower of the output (due to the P -wave) of the mterpolatlon
Processor, and Q is the autopower of the output (due to the P-wave) of a
single vertical seismometer. E/Q is what we have Previously called the
total error, and we shall continue to call it by that name, although it is
now somewhat misleading to do so since in the present context it is de-

sirable for T.E. = E/Q to be large rather than small. For 3 vertical

.P-wave. T.E, =1.
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Suppose that we have P -waves whose appa_.rent'a_ngl’e‘of
emergence deviates from the vertical by an.angie 8. As.,usrual. assume
that the energy is isotropic with reséett to horizontal az“:ivmuth’ and un-
worrelated from direction to direction. Let ko(f) be the mhne wavenumber

of the P-waves. Then there is an apparent horizontal wave_number which

is approximately given by : ; (4. 7)

= in6
k kosm

and an apparent horizontal-vertical transfer junction K = cot8, Now as sume
that the fllters G are real, so that a(f, k), b(f,k), and c(f, k) are all real,
where k is given b‘r (4.7). Since K is also real, eq. (4.4) reduces to

(4. 8)

T.E. =a + c—z=a+ ctanZQ

K
Note that if the vertical ring v has radius 0 and contains only seismometer,

then a = 1 and hence 4. 8 becomes

(4. 9)
T.E. =1+ ¢ tanze,

showing that in this case, the vertical amplitude of incidént P-waves is
always increased by using the interpolation processor. . g

For fixed frequencies, it would be pousible to plot T.E.
as a junction of € and ko,, using (4. 8). Although a detailed im)estigation
has not been made, it appears that even for a multi-element vertical ring,

small deviations from the vertical angle of emergence will not s1gnif1cant-

ly affect P-wave signal amplitudes.




SECTION V
NUMERICAL CALCULATIONS

In order to check the theory presentea in the preceding
sections on concrete examples, a Fortran program fos vse on the IBM'
7044 has been written which (1) accepts as inputs a) the guomet’ﬁcal
parameters describiag a specific horizontal-vertical prediction array
and b) the modal parameters @p Kp, kP for a specific assumed multi~
mode surface wave noise field, (2) calculates V » S nm’ and C accordmg
to (2. 14~ 2, 16), (3) calculates the optimum mterpolatlon fllters G it
according to (2.17), and (4) calculates the optimum interpolation error
and total error according to (2.20). Provision is made in the program for
adding a given fraction ¢ «f random noise to the predicting channels
hl' e 'hN' as follows: we s1mply replace the matrix (C ) in (2. 11) by the
matrix (D ) defined by

(Dnj) = (an.) + A

where +...4C

and

= the ident’ty matrix. All computations have used the three values
e=90,¢=0.01, and e =0.10 meaning, respectively, no uncorrelated
rcise, 1l percent uncorrelated noise, and 10 percent uncorrelated noise

on the predicting channels.

In order to obtain fairly realistic examples of noise fields,

we have used the first 3 theoretically computed noise modes for a 12 layer
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theoretical UBO model (T.1. Array Research;Se.miannual_'Reppr‘t‘ No. 2,

&y

P.1-34). The horizontal and vertical émplitude functi(:;ns uP and _VP',

P =1,2,3 for the first three modes are shown in Figures (5.1 ~ 5, 3).

KP in equal to Vp/iUp. and @p is equal to (Up)z. The dispersion curves

for modes 1-3 are shown in Figure (5 4).

In Figure 5.2, notice that the horizontal amplitude for

no estimation of a vertical component from horizontal components is

|
:
|
‘node 2 vanishes at a frequency of about 0. § cps. At this frequency,. ;
!
. |
possible for mode 2, Hence by eq. (4. 5), J

the interpolation error equals 1

for a noise field consisting solely of mode 2. However, by properly ' 1

choosing the radius d for a vertical ring v, we can make the total error
small, as shown by eq. (4.6). For in eq. (4.6), T.E. = a(f, k) for H=0,
and for the proper choice of d, a(f,k) can be made vory small for the

frequency 1,05 cps.
0. 892 km,

The correct choice for d turns out to be approximately i}

Four cases have been computed. The assumed isotropic

noise fields for the four cases were:

CASE A: Modes 1 and 2. Frequency range:0.05-2 cps
CASE B: Modes 1 and 2. Frequency range:0.5-1.5 cps

CASE C: Modes 1 and 2. The horizontal and vertical
amplitudes of mode 2 were multiplied by 7,
80 as to make the vertical amplitudes of the

15t and 2nd modes approximately equal at 1 cps.
Frequency range : 0.05-2¢ps.

CASE D: Modes 1,2, and 3. Horizontal and vertical
amplitudes for mode 2 were again multiplied
by 7, and horizontal and vertical amplitudes for

mode 3 were multiplied by 10. Frequency range:
0.5-1.5 cps.
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Figure 5.4. Dispersion Curves for Modes 1 through 3 ~




The assumed array geometries for each case were:

CASE A: One vertical ring, radius = 0, 892 km.
Two horizontal rings, radii = 0,5 and 0.25
km, Six seismometers in each ring.

CASE B: One vertical ring, radius = 0.0, containing
one seismometer. One horizontal ring,
‘radius = 0.5 km, containing six seismometers.

CASE C: Same as Case A.

CASY D: One vertical ring, radius = 0. 892 km. Three
horizontal rings, radii = 0.5, 0.4, and 0. 25 km.
Six seismometers in each ring.

All rotation angles were zero for the cases considered.

In Figures 5.5 - 5.12, the computed interpolation filters,
interpolation error, and total error are shown for these four cases, for

an assumed ] percent uncorrelated noise on the predicting channels.

In Cases A and B the first mode is much larger than the
second mode, so that we almost have a single-mode noise field. However
Figures 5.6 and 5.8 show that we still obtain much better performance by
using 2 rings of horizontals and a ring of verticals than can be obtained by

using a single ring of norizontals and a single central vertical.

In the true multimode cases C and D we have niot obtained
good performance for frequencies less than 0.8 cps, probably because for
those frequencies the wavenumbers are small enough to make some of the
horizontal ring crosspower spectra almost as small as our assumed
random noise level. (By equation (3.9), the horizontal ring crosspower
spectra approach zero as k approaches zero.) However, for frequencies
greater than 0. 8 cps, useful results are obtained. It may be that by

varying the array geometrics one may broaden the band of frequencies .

over which good interpolation is possible. Further study is indicated.
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FILTER RESPONSE

0.5

1.0
FREQUENCY (CPS)

1.5

Figure 5.7. Computed Interpolation Filter for Case B {Modes 1 and 2,

FRACTIONAL EXREUR

1 Percent Uncorrelated Noise on Horizontal Ringj)
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Figure 5.8, Interpolation Error (Equals Total Error)
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SECTION VI
CONCLUSION

The results of this study point toward important future
applications of horizontal-vertical interpolation arrays in the fields
of teleseismic signal detection and oil exploration. Even in multimode
isotropic Rayleigh waves, horizontal-vertical interpolation arrays
have the theoretical capability of canceling almost all surface wave noise
on a vertical trace while passing a vertical P-wave without distortion,
In Section IV, we saw that good performance may be expected even if the

P-wave is not quite vertical.

Additional study is required of the problem of optimizing
array geometry. It appears that the overall dimensions of horizontal -
vertical prediction arrays will in general be smaller than for vertical
arrays with the same number of instruments (all of the arrays considered
in Section V were less than 2 km in greatest dimension). In fact, were
it not for the necessity of assuming the presence of uncorrelated noise
on the predicting channels, eqs. (3.18) show that the best perfcrmance
would be approached as the radii of the horizontal rings approach zero.
The question of how best to choose the ring radii, however, has not
been answered satisfactorily. The same is true of the question of
choosing the number of seismometers and rotation angles for each
ring. It is suggested that further studies be undertaken to determine
array response for representative noise models, such as those in
Section V. In order to aid in the understanding of the functioning of a
given array, it may be helpful to prepare array response plots of the

type described in Section IV B,
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Finally, we must observe that all of cur work here has
one important. shortcoming. it is not based upon real data, It is
important now to procede from the theoretical stage of mveatigation
to the experimental, The crucial question is not how weli horizontal-~.
vertical interpolation arrays work on paper — it is how well they work
in the field.
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